

METALLIZED FILM CAPACITORS © High Energy Corporation, 2008

High Voltage

High Current

High Frequency

HIGH ENERGY CORP.

Sales@HighEnergyCorp.com

(610) 593-2800

FAX (610) 593-2985

High Energy Corporation is housed in a modern factory at the edge of time. Historic Parkesburg stands at the eastern gateway to Pennsylvania's Lancaster County, a place where time sometimes seems to stand still. Our neighbors farm in centuries-old fashion. Come to visit us and your car may share the road with an Amish buggy or a horse-drawn farm wagon. Our people reflect the values of their surroundings; they are hard working, honest to a fault and loyal to their employer and to their customers. Parkesburg residents have been this way for over 200 years and will not change. While our technology advances at the pace of modern-world commerce, our values remain true to an older time and stricter code. We may be an anachronism, but we like it this way. Our customers have come to appreciate doing business in an old fashioned manner within the modern world.

Partner with us and enjoy the benefits of buying first-rate modern technology components from people who exalt old-world craftsmanship and view their word as a bond. Step back in time and forward in technology by choosing High Energy Corporation capacitors for your products.

Contents

Custom Metallized Film Capacitors and Special Designs	2
We will design and fabricate exactly what you need.	
Standard Conduction-Cooled Metallized Film Capacitors	
Series CHD - 0.1 to 0.2 µF, 700 V _{RMS} , 250 A _{RMS} , 150 kVA, 700 kHz	4
Series CHE - 0.2 to 2.0 µF, 525 to 700 V _{RMS} , 550 to 800 A _{RMS} , 325 to 400 kVA, 700 kHz	6
Series CHF - 0.1 to 1.32 µF, 600 to 1000 V _{RMS} , 400 to 650 A _{RMS} , 300 kVA, 1000 kHz	8
Series CHG - 0.11 to 2.4 µF, 400 to 700 V _{RMS} , 180 to 500 A _{RMS} , 125 to 325 kVA, 500 kHz	10
Series CHH - 0.1 to 2.5 µF, 400 to 700 V _{RMS} , 250 to 400 A _{RMS} , 160 kVA, 800 to 1000 kHz	12
Series CHJ - 0.18 to 5.0 µF, 300 to 700 V _{RMS} , 375 to 600 A _{RMS} , 180 to 210 kVA, 300 to 600 kHz	14
Series CHL - 0.1 to 2.5 µF, 400 to 700 V _{RMS} , 250 to 400 A _{RMS} , 160 kVA, 800 to 1000 kHz	16
Series CHM - 0.1 to 2.5 $\mu F,400$ to 700 $V_{RMS},250$ to 400 $A_{RMS},160$ kVA, 800 to 1000 kHz	18
Series CHN0 – 1.4 to 10 µF, 600 to 650 V _{RMS} , 400 to 600 A _{RMS} , 250 kVA, 70 kHz	20
Series CHN6 - 0.03 to 1.2 $\mu F,450$ to 1000 $V_{RMS},125$ to 275 $A_{RMS},120$ kVA, 1000 kHz	22
Standard Water-Cooled Metallized Film Capacitors	
Series CHX 0.06 μ F, 1500 to 700 V _{RMS} , 200 A _{RMS} , 3000 kVA, 800 to 450 kHz	24
Metallized Film Background & Theory	26
Warranty Statement	32

High Energy Corporation metallized film capacitors in conformity to RoHS Directive are optionally available upon request. Specifically, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium and specific bromine-based flame-retardants, PBB and PBDE, will not be used.

Note: Product specifications are subject to change without notice.

HIGH ENERGY CORPORATION

Custom Capacitors & Special Designs

In today's 'modern' business climate, companies tend to provide products that fit the general needs of the industry they serve and to avoid deviating from these popular offerings. However, such 'blister-pack' solutions don't always serve the customer well. **High Energy Corporation** takes a different stance; we welcome the challenge of providing custom parts of the highest quality, rapidly and at a fair price.

We are an Engineering managed and driven enterprise and we welcome the chance to partner with our customers and to bring our unique capabilities to bear upon the development, refinement and evolution of stateof-the-art metallized film capacitors. Whether your needs are for a simple custom value in one of our standard products, or for an entirely new packaging concept, we are ready to work with you in refining your high voltage, current, power or frequency application. This catalog illustrates many standard **High Energy Corporation** products. Think of these as a launch point for your product planning and design thoughts. We will be delighted to produce *exactly* the 'right' component for your new design or for your mature product and you will be delighted with the result! Peruse some unique custom parts designed for others here.

- 700 V_{RMS} Working Voltage
- 150 kVA Max Power
- 250 A_{RMS} Max Current
- Conduction Cooled
- Series & Parallel Stackable

GENERAL SPECIFICATIONS

Capacitance Range	0.1 to 0.2 μF standard; 0.01 to 0.33 custom
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	68 x 33 x 22.5 mm 2 $^{11}/_{16}$ x 1 $^{5}/_{32}$ x $^{7}/_{8}$ inch
Weight	0.2 kg; .44 lb
Operating Temperature	Up to +90° C
Cooling method	Conduction-cooled by bus bars
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

CAP	V _{MAX}	fL	S _{MAX}	f _H	I _{MAX}	f MAX	PART NUMBER
(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
0.01	700	4868	150	6624	250	700	CHD5001M
0.1	700	487	150	662	250	700	CHD5010M
0.2	700	243	150	331	250	700	CHD5020M
0.33	700	148	150	201	250	500	CHD5330M

Typical Maximum Rating Curves for CHD Series Capacitors

CHE Series Metallized Film Capacitors

- Up to 700 V_{RMS} Working Voltage
- Up to 400 kVA Max Power
- Up to 800 A_{RMS} Max Current
- Conduction Cooled
- . Series & Parallel Stackable

GENERAL SPECIFICATIONS

Capacitance Range	0.2 to 2.0 μF standard; 0.01 to 0.33 custom
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	70 x 57 x 41 mm 2 $^{3}/_{4}$ x 2 $^{1}/_{4}$ x 2 $^{5}/_{8}$ inch
Weight	0.5 kg; 1.1 lb
Operating Temperature	Up to +90° C
Cooling method	Conduction-cooled by bus bars
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

CAP	V _{MAX}	f∟	S _{MAX}	f _H	IMAX	f MAX	PART NUMBER
(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
0.2	700	527	325	740	550	700	CHE6020M
0.33	700	320	325	448	550	700	CHE6033M
0.66	700	160	325	224	550	700	CHE6066M
1.0	600	177	400	224	750	700	CHE6100M
1.5	525	154	400	170	800	700	CHE6150M
2.0	525	115	400	127	800	700	CHE6200M

Typical Maximum Rating Curves for CHE Series Capacitors

HIGH ENERGY CORPORATION CHF Series Metallized Film Capacitors

- Up to 700 V_{RMS} Working Voltage
- · 600 kVA Max Power
- Up to 525 A_{RMS} Max Current
- Conduction Cooled
- Series & Parallel Stackable

GENERAL SPECIFICATIONS

Capacitance Range	0.18 to 1.2 μF standard; 0.01 to 0.33 custom
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	49 x 49 x 30 mm 1 $^{15}/_{16}$ x 1 $^{15}/_{16}$ x 1 $^{3}/_{16}$ inch
Weight	0.25 kg; 0.5 lb
Operating Temperature	Up to +90° C
Cooling method	Conduction-cooled by bus bars
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

CAP	V _{MAX}	fL	SMAX	f _H	MAX	f MAX	PART NUMBER
(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
0.1	1000	477	300	848	400	500	CHF6010M
0.2	700	239	300	373	400	500	CHF6020M
0.33	700	295	300	401	500	500	CHF6033M
0.66	600	148	300	201	500	500	CHF6066M
1.0	600	133	300	224	650	500	CHF6100M
1.32	500	100	300	170	650	300	CHF6132M

Typical Maximum Rating Curves for CHF Series Capacitors

HIGH ENERGY CORPORATION CHG Series Metallized Film Capacitors

- Up to 700 V_{RMS} Working Voltage
- Up to 375 kVA Max Power
- Up to 625 A_{RMS} Max Current
- Conduction Cooled
- Series & Parallel Stackable

SERIES	Т	w
CHG5	7/8 (22.2)	1 11/16 (42.8)
CHG6	1 3/16 (30.2)	2 (51)

PART

GENERAL SPECIFICATIONS

Capacitance Range			0.11 to 2.4 μF						
Capacitance Tolerance			± 10% standard, other tolerances available						
Dimensions		С	CHG5 – 76.2 x 37.8 x 39.2 (mm) 3 x 1 $^{11}/_{16}$ x 1 $^{3}/_{4}$ (inch) CHG6 – 76.2 x 3 x 2 x			6 – 76.2 x 5 3 x 2 x 1	0.8 x 39.2 ³ / ₄		
Weight		С	HG5 – 0.14 (kg 0.30 (lb)) CHG6 ·	- 0.23 0.50				
Operating Temperature		t ure U	p to +90° C						
Cooling method		C	Conduction-cooled by bus bars						
Dissipat	tion Factor	0.	1% Maximum						
Stray Inc	ductance	le	ss than 5 nH						
CAP (µF)	V _{MAX} (V _{RMS})	f∟ (kHz)	S _{MAX} (kVA)	f _H (kHz)	I _{MAX} (A _{RMS})	f _{MAX} (kHz)	Value Available In CHG5 Size		
0.11	700	369	125	375	180	500	$\overline{\mathbf{v}}$		
0.21	700	270	175	389	300	500	\checkmark		

NUMBER Size CHG6018 CHG6021 U.Z I 303 0.33 700 197 200 295 350 500 CHG6033 0.51 650 275 CHG6051 203 283 500 500 0.66 325 600 218 290 625 500 CHG6066 1.2 106 200 106 CHG6120 500 **400** 500 2.4 400 83 200 83 500 500 CHG6240

Add suffix **E** for (as in CHG5018ME) for epoxy-potted part. Custom capacitance values are available upon request.

Typical Maximum Rating Curves for CHG Series Capacitors

HIGH ENERGY CORPORATION

1 3/16

(30.2 mm)

1 11/32

(34 mm)

4 0.787

(20 mm)

1

Ð

+)-2 11/16

(68 mm)

M6 X 8 mm DEEP

CHH Series Metallized Film Capacitors

- - . Series & Parallel Stackable

GENERAL SPECIFICATIONS

Capacitance Range	0.1 to 2.5 μF standard; 0.01 to 0.33 custom
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	68 x 30.2 x 30.2 mm 2 ¹¹ / ₁₆ x 1 ³ / ₁₆ x 1 ³ / ₁₆ inch
Weight	0.5 kg; 1.1 lb
Operating Temperature	Up to +90° C
Cooling method	Conduction-cooled by bus bars
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

CAP	V _{MAX}	f∟	S _{MAX}	f _H	I _{MAX}	f _{MAX}	PART NUMBER
(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
0.1	700	519	160	621	250	1000	CHH6010M
0.17	700	305	160	365	250	1000	CHH5017M
0.33	700	157	160	228	275	800	CHH6033M
0.66	600	107	160	135	300	800	CHH6066M
1.2	500	85	160	87	325	800	CHH6120M
2.5	400	64	160	64	400	800	CHH6250M

CHH Series Metallized Film Capacitors

13

HIGH ENERGY CORPORATION CHJ Series Metallized Film Capacitors

2-.02

 $1\frac{3^{\pm,03}}{16}$

- Up to 700 V_{RMS} Working Voltage
- Up to 210 kVA Max Power
- Up to 600 A_{RMS} Max Current
- Conduction Cooled
- Series & Parallel Stackable

GENERAL SPECIFICATIONS

Capacitance Range	0.18 to 5.0 μF standard; 0.01 to 0.33 custom
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	76.2 x 50.8 x 36.5 mm 3 x 2 x 1 $^{7}/_{16}$ inch
Weight	0.27 kg; 0.6 lb
Operating Temperature	Up to +90° C
Cooling method	Conduction-cooled by bus bars
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

CAP	V _{MAX}	fL	S _{MAX}	f _H	MAX	f MAX	PART NUMBER
(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
0.18	700	379	210	591	375	600	CHJ6018M
0.24	700	284	210	444	375	600	CHJ6024M
0.33	700	207	210	323	375	600	CHJ6033M
0.66	600	141	210	259	475	500	CHJ6066M
1.2	500	111	210	174	525	300	CHJ6120M
2.4	400	83	200	91	525	300	CHJ6240M
5.0	300	64	180	64	600	300	CHJ6500M
∧			Halls	- 1			

Typical Maximum Rating Curves for CHJ Series Capacitors

HIGH ENERGY CORPORATION CHL Series Metallized Film Capacitors

- Up to 700 V_{RMS} Working Voltage
- · 160 kVA Max Power
- Up to 400 A_{RMS} Max Current
- Conduction Cooled
- Series & Parallel Stackable

GENERAL SPECIFICATIONS

Capacitance Range	0.1 to 2.5 μF standard; 0.01 to 0.33 custom
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	68 x 32 x 30.2 mm 2 11 / ₁₆ x 1 1 / ₄ x 1 3 / ₁₆ inch
Weight	0.5 kg; 1.1 lb
Operating Temperature	Up to +90° C
Cooling method	Conduction-cooled by bus bars
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

CAP	V _{MAX}	f∟	S _{MAX}	f _H	I _{MAX}	f _{MAX}	PART NUMBER
(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
0.1	700	519	160	621	250	1000	CHL6010
0.17	700	305	160	365	250	1000	CHL6017
0.33	700	157	160	228	275	800	CHL6033
0.66	600	107	160	135	300	800	CHL6066
1.2	500	85	160	87	325	800	CHL6120
2.5	400	64	160	64	400	800	CHL6250

Typical Maximum Rating Curves for CHL Series Capacitors

HIGH ENERGY CORPORATION CHM Series Metallized Film Capacitors

- Up to 700 V_{RMS} Working Voltage
- 160 kVA Max Power
- Up to 400 A_{RMS} Max Current
- Conduction Cooled
- Series & Parallel Stackable

GENERAL SPECIFICATIONS

Capacitance Range	0.1 to 2.5 μF standard; 0.01 to 0.33 custom
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	70 x 32 x 30.2 mm 2 $^{3}/_{4}$ x 1 $^{1}/_{4}$ x 1 $^{3}/_{16}$ inch
Weight	0.5 kg; 1.1 lb
Operating Temperature	Up to +90° C
Cooling method	Conduction-cooled by bus bars
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CAP	V _{MAX}	f∟	SMAX	f _H	I _{MAX}	f _{MAX}	PART NUMBER
0.17005191606212501000CHM6010M0.177003051603652501000CHM6017M0.33700157160228275800CHM6033M0.66600107160135300800CHM6066M1.25008516087325800CHM6120M2.54006416064400800CHM6250M	(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
0.177003051603652501000CHM6017M0.33700157160228275800CHM6033M0.66600107160135300800CHM6066M1.25008516087325800CHM6120M2.54006416064400800CHM6250M	0.1	700	519	160	621	250	1000	CHM6010M
0.33700157160228275800CHM6033M0.66600107160135300800CHM6066M1.25008516087325800CHM6120M2.54006416064400800CHM6250M	0.17	700	305	160	365	250	1000	CHM6017M
0.66600107160135300800CHM6066M1.25008516087325800CHM6120M2.54006416064400800CHM6250M	0.33	700	157	160	228	275	800	CHM6033M
1.2 500 85 160 87 325 800 CHM6120M 2.5 400 64 160 64 400 800 CHM6250M	0.66	600	107	160	135	300	800	CHM6066M
2.5 400 64 160 64 400 800 CHM6250M	1.2	500	85	160	87	325	800	CHM6120M
	2.5	400	64	160	64	400	800	CHM6250M

Typical Maximum Rating Curves for CHM Series Capacitors

HIGH ENERGY CORPORATION CHN0 Series Metallized Film Capacitor

- Up to 650 V_{RMS} Working Voltage
 250 kVA Max Power
 - Up to 600 A_{RMS} Max Current
 - Conduction Cooled
 - Up to 10 μF

GENERAL SPECIFICATIONS

Capacitance Range	1.4 to 10 μF
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	80 mm (maximum) diameter x 70 mm high 3 1 / ₈ (maximum) diameter x 2 3 / ₄ high
Weight	.75 kg; 1.7 lb
Operating Temperature	Up to +90° C
Cooling method	Conduction-cooled by bus bars
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

CAP	V _{MAX}	f∟	S _{MAX}	f _H	I _{MAX}	f MAX	PART NUMBER
(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
1.4	650	67	250	73	400	70	CHN0140M250
2.2	650	43	250	46	400	70	CHN0220M250
3.0	650	31	250	53	500	70	CHN0300M250
6.2	600	18	250	37	600	70	CHN0620M250
8.5	600	13	250	27	600	70	CHN0850M250
10	600	11	250	23	600	70	CHN1000M250

Typical Maximum Rating Curves for CHN0 Series Capacitors

GENERAL SPECIFICATIONS

Capacitance Range	0.025 to 1.2 μF
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	30 mm diameter x 29 mm high 1 $^{3}/_{16}$ " diameter x 1 $^{1}/_{8}$ " high
Weight	.15 kg; .33 lb
Operating Temperature	Up to +90° C
Cooling method	Conduction-cooled by bus bars
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

CAP	V _{MAX}	f∟	SMAX	f _H	MAX	f _{MAX}	PART NUMBER
(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
0.03	1000	636	120	690	125	10000	CHN6003M
0.06	1000	318	120	345	125	1000	CHN6006M
0.09	900	262	120	331	150	1000	CHN6009M
0.17	800	175	120	175	150	1000	CHN6017M
0.25	800	119	120	162	175	1000	CHN6025M
0.33	700	118	120	161	200	1000	CHN6033M
0.66	600	80	120	102	225	1000	CHN6066M
1.2	450	79	120	83	275	1000	CHN6120M
O			lable	-1			

Typical Maximum Rating Curves for CHN6 Series Capacitors

HIGH ENERGY CORPORATION

CHX Series Water-Cooled Capacitors

- **1500 V_{RMS} Working Voltage** •
- 300 kVA Max Power

AND ENERGY CORD. CH45006MM

0803

- Up to 200 A_{RMS} Max Current
- Water-Cooled

GENERAL SPECIFICATIONS

Capacitance Range	0.06 μF standard; up to 0.069 μF custom
Capacitance Tolerance	± 10% standard, other tolerances available
Dimensions	53 mm diameter x 71 mm high 2 $^{1}/_{16}$ " diameter x 2 $^{13}/_{16}$ " high
Weight	.36 kg; .79 lb
Operating Temperature	Up to +90° C
Cooling method	Individually water-cooled
Dissipation Factor	0.1% Maximum
Stray Inductance	less than 5 nH

CAP	V _{MAX}	f∟	S _{MAX}	f _H	MAX	f MAX	PART NUMBER
(μF)	(V _{RMS})	(kHz)	(kVA)	(kHz)	(A _{RMS})	(kHz)	
0.06	1500	353	300	353	200	450	CHX5006MM
<0.06	Custom						CHX500xMx
>0.06	Custom						CHX50xxMx
* Electrical expressions of evolutions menter very with the energitical expressions very							

Electrical parameters of custom parts vary with the specified capacitance value.

COOLING REQUIREMENTS

Capacitor Temperature	Not to exceed 90° C
Temperature Rise	The capacitor can exhibit a temperature rise of up to 40° C at full rated power
Water Temperature	Inlet water temperature must be 50° C or less
Flow Rate	1.5 liter/minute (0.41 gpm) or more
Cooling Water Pressure	Not to exceed 4 Bar (60 PSIG)

HIGH ENERGY CORPORATION

A metallized film capacitor is composed of a wound core soldered between copper terminals. The wound core is a seemingly simple thing, but it is really quite a sophisticated component. In the simplest embodiment, it consists of two metallic electrodes separated by an insulating dielectric, a thin film of polypropylene.

Two long and narrow 'plates' separated by a thin dielectric are formed. The resulting capacitance is determined by the *surface area* of the electrodes, **A**, the *thickness*, **t**, of the separating dielectric and the *relative dielectric constant*, **K**, of the separating film. In specific:

$$C = \frac{KA\varepsilon_0}{t} \tag{1}$$

C = Capacitance in Farads (F)

K = Relative Dielectric Constant (dimensionless)

A = Surface area of each electrode (m²)

 ε_0 = Permitivity of vacuum = 8.854 x 10⁻¹² (F/m)

 \mathbf{t} = Thickness of dielectric between electrodes (m)

High Energy Corporation employs many different types of core windings in its broad line of metallized film capacitors. Each is chosen to optimize the component for a specific mission profile.

Metallized film capacitors offer high capacitance in a small package. They can pass nearly awesome reactive currents without failure and they withstand very significant voltage potentials without damage. These rugged and reliable (self-healing) high power capacitors call upon a complex interlocking myriad of manufacturing processes to make them a reality.

Basic Electronic Considerations

The *impedance* of an ideal capacitor is the complex spectrum given by:

$$Z(f) = \frac{V(f)}{i(f)} = \frac{1}{2\pi fC} \left\langle -90^{\circ} \right\rangle$$
(2)

 $Z = Impedance in Ohms (\Omega) \\ f = Frequency in Hertz (Hz) \\ C = Capacitance in$ *Farads* $(F \\ V = Electromotive Force (Volt) \\ I = Current (Ampere) \\ \pi = 3.14159 \dots$

However, as illustrated below, a real capacitor will have imperfections that can be modeled by series and parallel resistors and a series inductor. A more complicated impedance results.

Equivalent circuit model for a metallized film capacitor.

Effect of (exaggerated) R_p and R_s on impedance.

HIGH ENERGY CORPORATION

Metallized Film Background & Theory

As shown (by the red traces) in the directly preceding figure, the *magnitude* of a $(1 \ \mu F)$ capacitor's impedance decreases in proportion to frequency while its *phase angle* is a constant -90°. The black traces illustrate the (exaggerated) effects of parallel and series resistors, $\mathbf{R}_{\mathbf{p}}$ and $\mathbf{R}_{\mathbf{s}}$.

A low value of parallel or 'leakage' resistor, $\mathbf{R}_{\mathbf{p}}$, causes a *reduction* of the capacitor's impedance at frequencies less than $1/2\pi R_p C$ Hz. It also causes the *phase* to deviate from -90° towards 0°. A high value of series resistor, \mathbf{R}_{s} , causes an *increase* in capacitor impedance for frequencies above $1/2\pi R_s C$ with a phase shift towards 0°.

However, the resistor values ($\mathbf{R}_{\mathbf{p}} = 100 \ \Omega$ and $\mathbf{R}_{\mathbf{s}} =$ 1 Ω) of the previous figures are unrealistic. More typical values might be $\mathbf{R}_{\mathbf{p}} = 10 \text{ M}\Omega$ and $\mathbf{R}_{\mathbf{s}} = 1 \text{ m}\Omega$ $(10^{-3} \Omega)$, shown in black below. These are compared with the (blue trace) previous exaggerations in Dissipation Factor spectra.

Dissipation Factors comparing effect of R_p and R_s

The *Dissipation Factor* (DF), δ , is a real-valued spectrum corresponding to the *tangent* of the *impedance phase*. As such, it is the ratio of *real* or phase-coincident response to the *imaginary* or quadrature-phase response.

The Dissipation Factor is thus also equal to the ratio of (heat producing) real power dissipated within the capacitor to the *reactive power* oscillating through it. Note that for an 'ideal' capacitor (prior red traces) the Dissipation Factor is zero-valued at all frequencies and cannot be plotted in the above loglog format.

Now consider the influence of a "series inductance", Ls:

The following violet trace shows that the addition of a small series inductance (5 nanoHenry in this case) creates a peak in the Dissipation Factor at the self*resonance frequency*, f_n , defined by:

$$f_n = \frac{1}{2\pi} \sqrt{\frac{1}{LC}} \quad (\text{Hz}) \tag{3}$$

Note changed frequency axis to accentuate the effects of L_s.

Dissipation Factor for realistic parameter values.

The addition of this component to the capacitor model produces a noticeable 'notch' in the impedance *magnitude* at the same frequency. The most pronounced effect is a 180° 'jump' in the impedance phase spectrum at f_n , as shown below.

Impedance Magnitude and Phase with and without Ls.

Metallized Film Background & Theory

Performance Limits & Thermodynamics

The *Leakage Resistance*, $\mathbf{R}_{\mathbf{p}}$, is fundamentally determined by the *resistivity* of the dielectric and the terminal-to-terminal insulation of the capacitor. The *Equivalent Series Resistance* (ESR), \mathbf{R}_{s} , is dominated by the quality of the soldered joints between the *terminals* and the *electrodes*. The *Equivalent Series Inductance* (ESL), \mathbf{L}_{s} , is basically determined by the length of the terminal assemblies.

Other considerations limit the performance of a capacitor. The *maximum voltage* is fundamentally determined by the *thickness of the dielectric film*, **t**, between the electrodes and the resistivity and the break-down potential of the dielectric. The *maximum current* is limited by the *surface area of the electrodes*, **A** and the thickness of the deposited aluminum electrodes.

Thermal model of a capacitor in its environment.

Electrical parameters are further limited by thermodynamic considerations. An alternating current passing through a theoretically perfect capacitor generates no heat, as the voltage across the capacitor is 90° out-of-phase with the current. Multiplying (and averaging) the instantaneous voltage and this *reactive* current produces only imaginary *reactive power*, **Q**.

In a real capacitor, the voltage, **V**, and current, **I**, are <u>not</u> in perfect phase-quadrature. The total current contains a small (-60 dB, typical) *active* component, **I**_A, in phase-coincidence with the voltage. The product (of RMS values), $\mathbf{V} \cdot \mathbf{I}_{A} = \mathbf{P}$, defines the *active* electrical power (Watts) dissipated within the capacitor as heat. **I**_A is well approximated by $\mathbf{I} \cdot \boldsymbol{\delta}$, where $\boldsymbol{\delta}$ is the previously defined dissipation factor.

The product of RMS values, **V**·**I**=**S**, is always a larger number, termed the *apparent power*. **S** reflects both the active and reactive power components in accordance with:

$$S = \sqrt{P^2 + Q^2} \quad (VA) \tag{4}$$

When the capacitor is at the *same* temperature $(T_{Ambient})$ as it surroundings, it cannot expel any heat. As its temperature increases (by T_{Rise}) above the surrounding $T_{Ambient}$, it is able to pass thermal power, $P_{Heat Out}$, to the environment.

The amount of heat expelled, $P_{Heat Out}$, is a function of T_{Rise} . (This relationship is well modeled by a fourth-order polynomial.) When $P_{Heat Out} = P_{Elect}$, the capacitor's temperature stabilizes at T_{Rise} above $T_{Ambient}$.

Thus, the capacitor has three very fundamental limiting specifications. These are:

- 1. Maximum rated operating *Voltage*, V_{Max}
- 2. Maximum rated operating Current, IMax
- 3. Maximum rated operating Apparent Power, S_{Max}

The following figure illustrates typical **Maximum Rated** power parameters as a function of frequency.

Maximum Rating curves for a capacitor.

Within that frequency band bounded by lower frequency, \mathbf{f}_L , and upper frequency, \mathbf{f}_U , the *limiting specification* is the maximum rated apparent power. \mathbf{S}_{max} is that experimentally-determined total power that will cause the capacitor's temperature to rise 40° C (104° F) above the ambient. Within this *fullpower* frequency band, both the <u>voltage and current</u> <u>must be less than their respective maximum ratings</u>.

Below \mathbf{f}_{L} , the limiting specification is the maximum rated voltage, \mathbf{V}_{Max} . In this region, both the current and power must be less than their maximum rated values. Above \mathbf{f}_{U} , the limiting specification is the maximum rated current, \mathbf{I}_{Max} . In this frequency span, both the voltage and power must be less than their maximum rated values. HIGH ENERGY CORPORATION

T 7

The apparent power, S, at any frequency, f, is related to the root-mean-square current, **I**_{RMS} by:

$$S = I_{RMS}^2 \cdot \left| Z \right| = \frac{I_{RMS}^2}{2 \cdot \pi \cdot f \cdot C} \le S_{Max} \tag{5}$$

When the frequency, **f**, exactly equals the upper bounding frequency, f_{U} , the current, I_{RMS} , must equal I_{Max} and (5) can be solved for f_U .

$$f_U = \frac{I_{Max}^2}{2 \cdot \pi \cdot C \cdot S_{Max}} \cong \frac{0.159 \cdot I_{Max}^2}{C \cdot S_{Max}} \tag{6}$$

The apparent power, S, may also be expressed in terms of the voltage across the capacitor, V_{RMS} .

$$S = \frac{V_{RMS}^2}{|Z|} = 2 \cdot \pi \cdot f \cdot C \cdot V_{RMS}^2 \le S_{Max}$$
(7)

Equation (7) can be solved for lower bounding frequency, f_L , where the voltage, V_{RMS} must equal V_{max}.

$$f_L = \frac{S_{Max}}{2 \cdot \pi \cdot C \cdot V_{Max}^2} \cong \frac{0.159 \cdot S_{Max}}{C \cdot V_{Max}^2} \tag{8}$$

Thus the maximum rated RMS operating voltage may be stated:

$$V_{RMS} = V_{Max}$$

$$V_{RMS}_{f < f_l} = \sqrt{\frac{S_{Max}}{2 \cdot \pi \cdot f \cdot C}}$$

$$V_{RMS}_{f_L \le f \le f_U} = \frac{I_{Max}}{2 \cdot \pi \cdot C \cdot f}$$
(9)

In like manner, the maximum rated RMS operating current is described by:

$$I_{RMS} = 2 \cdot \pi \cdot f \cdot C \cdot V_{Max}$$

$$I_{RMS} = \sqrt{2 \cdot \pi \cdot f \cdot C \cdot S_{Max}}$$

$$I_{L \leq f \leq f_U} = I_{Max}$$

$$I_{RMS} = I_{Max}$$
(10)

Getting the Heat Out

Most of the standard parts illustrated in this catalog expel their heat through *conduction* to the bus bars to which they are attached. In turn, the bus bars must be cooled by continuous water flow. The provided water-cooling must be sufficient to assure that the capacitor (or any capacitor within a bank) never exceeds 90° C (194° F). In general, the cooling water must be 50°C (122 °F) or less.

To assure proper cooling, capacitors must be firmly affixed to the bus bars. Capacitor mounting surfaces must be completely in contact with the bus bars; flat mating surfaces are essential. When the cooling flow is shared between capacitors and induction elements (such as heating coils), it is strongly recommended that the capacitors be cooled first, as they place much less thermal load on the cooling system than do the induction coils.

The specific heat, $\mathbf{c}_{\mathbf{p}}$, of water is 1 *calorie/gram* $^{\circ}C$ or 4186 J/ kg °C. Multiplying this by water's density, ρ , (1 kg/l) yields a constant with dimensions of energy per volume x temperature. Remembering the Joule (J) to be a Watt-Second (Ws) allows us to recognize the dimensions of ρc_n to be power per volume-flow x temperature. Thus we can write (11).

$$\frac{P}{F \cdot \Delta T} = \rho C_p = 4186 \tag{11}$$

Where **P** = heat power entering water (Watt) **F** = flow rate of water (liter/second) Δ **T** = temperature rise of the water (°C)

The maximum real power, **P**, dissipated (as heat) in an operating capacitor is equal to the dissipation factor, δ , multiplied by the maximum rated apparent power, **S**_{Max}. High Energy metallized film capacitors have a maximum δ of 0.001. These parts also exhibit a 40° C temperature rise (Δ T) when operated at full rated power. Substituting these characteristics in (11) discloses the *minimum* cooling flow (l/s).

$$F = \frac{P}{4186 \cdot \Delta T} = \frac{\delta \cdot 1000 \cdot S_{Max}}{4186 \cdot \Delta T}$$

$$= \frac{.001 \times 1000 \cdot S_{Max}}{4186 \times 40} = \frac{S_{Max}}{167440}$$
(12)

Where \mathbf{S}_{Max} = Full Rated Power (kVA)

For the minimum cooling flow in liter/minute, use:

$$lpm = \frac{S_{Max}}{2791} \tag{13}$$

For the minimum cooling rate in gallon/minute use:

$$gpm = \frac{S_{Max}}{10148} \tag{14}$$

Plotting Rating Curves for HEC Parts

All parts listed in this catalog are presented with five power parameters: V_{Max} , $f_L S_{Max}$, F_U and I_{Max} . These are sufficient information to allow construction of the three *maximum rating* curves without using equations (5), (9) and (10). To do so, start by copying the log-log plot template at the end of this section or by obtaining a suitable sheet of log-log graph paper.

Begin by striking vertical reference lines at the f_L and f_U frequency locations as shown above right.

Then, to plot a *Maximum Voltage* spectrum, draw a horizontal line at the V_{Max} level from the graph's minimum frequency to f_L . Stop at this location, labeled **Point 1**.

Drawing the vertical and horizontal lines of a V_{Max} plot.

Draw a construction point two decades to the right and one decade below **Point 1**, as shown below. Draw a line from **Point 1** toward this temporary construction point. Stop the line at **Point 2**, the intersection with f_U .

Adding a segment with a slope equal to -1/2 to the plot.

From **Point 2** construct a temporary point one decade to the right and one decade below **Point 2**, as shown below. Draw a line from **Point 2** through this temporary construction point to the graph's maximum frequency.

To construct a *Maximum Power* diagram, draw a horizontal line at S_{Max} amplitude between the f_L and f_U endpoints. Construct temporary points one decade below and one decade to the side of **Points 1** and **2**. Draw lines through these temporary points from **Point 1** and **Point 2** to the upper (**Point 3**) and lower (**Point 4**) frequency extremes of the plot as shown below.

Finally, draw a *Maximum Current* spectrum by drawing a horizontal line at amplitude I_{max} from the graph's maximum frequency to **Point 1** at f_U . Then raw a construction point two decades to the left and one decade below **Point 1**, as shown above. Draw a line from **Point 1** toward this temporary point. Stop the line at **Point 2**, the intersection with f_L . From **Point 2** construct a temporary point one decade to the left and one decade below **Point 2**. Draw a line from **Point 2** through this temporary construction point to the graph's minimum frequency at **Point 3**.

WARRANTY

All products purchased from High Energy Corporation are guaranteed to be free from defects of workmanship and material under normal use for a period of one year from the date of shipment.

LIMITATIONS

There are no other warranties, expressed or implied. Specifically excluded, but not by way of limitation, are the implied warranties of fitness for a particular purpose and merchantability.

It is understood and agreed that the sellers liability, whether in contract, in tort, under any warrantee, in negligence or otherwise, shall not exceed the price paid by the purchaser, and under no circumstance shall the seller be liable for special, indirect or consequential damages. The price stated for the equipment is a consideration in limiting the seller's liability. No action, regardless of form, arising out of the transaction of this agreement may be brought by purchaser more than one year after the course of action has accrued.

Seller's maximum liability shall not exceed and buyer's remedy is limited to either (i) repair or replacement of the defective product, or at the seller's option (ii) return of the product and refund of the purchase price, and such remedy shall be the entire and exclusive remedy.

Note: Product specifications are subject to change without notice.

We're easy to find!

Please visit us at: www.highenergycorp.com

